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Summary

Current models of human visual search have

extended the traditional serial/parallel

search dichotomy. Two successful models

for predicting human visual search are the

Guided Search model and the Signal

Detection Theory model. Although these

models are inherently different, it has been

difficult to compare them because the

Guided Search model is designed to predict

response time, while Signal Detection

Theory models are designed to predict

performance accuracy. Moreover, current

implementations of the Guided Search

model require the use of Monte-Carlo

simulations, a method that makes fitting the

model' s performance quantitatively to

human data more computationally time

consuming. We have extended the Guided

Search model to predict human accuracy in
target-localization search tasks. We have

also developed analytic expressions that
simplify simulation of the model to the

evaluation of a small set of equations using
only three free parameters. This new

implementation and extension of the Guided

Search model will enable direct quantitative

comparisons with human performance in

target-localization search experiments and

with the predictions of Signal Detection

Theory and other search accuracy models.

Introduction

In standard visual-search tasks, the observer

looks for a target among a set of distractors.

When the target differs greatly from the

distractors along a single feature dimension

(e.g. contrast, orientation, color, etc.), the

time to find the target is relatively constant

as a function of the number of elements (set

size). This fact is commonly interpreted as
evidence for parallel search (i.e. the

simultaneous examination of potential

targets). Alternatively, when the target is
similar to the distractors, the distractors are

heterogeneous, or the target can be

differentiated from the distractors only by
the combination of two or more feature

dimensions (conjunctions), the response

time increases drastically with set size. This

finding is commonly interpreted as evidence

for a temporally serial search (i.e. the

sequential examination of potential targets).

Although the parallel/serial dichotomy has
dominated research for more than two

decades (refs. 1-4), and is central to many

theories of visual search (e.g., Feature

Integration Theory; ref. 5), more recently,

models of visual search have moved away

from the original strict serial/parallel

dichotomy.

There have been two traditions in studying
the processes mediating visual search. One

approach has been to allow extended

viewing of the stimulus and to measure

observer response times (e.g., refs. 6-8),
while a second approach has been to use

fixed duration displays and to measure

detection accuracy, the probability of

correctly detecting the presence of the target
(e.g., refs. 9, 10). The response-time results

can be predicted by a two-stage Guided

Search (GS) model (refs. 6, 11) in which an

initial parallel system guides a subsequent

serial-search stage. The accuracy results

can be predicted by a single-stage Signal
Detection Theory (SDT) model (ref. 12) in

which processing is parallel but noisy (e.g.

refs. 9, 10, and 13-16). Even though the GS
and SDT models are based on

fundamentally different assumptions about

human visual information processing,

progress in our understanding of search has

been hampered by the difficulty associated

with directly comparing these two models

because they were developed for different

experimental paradigms and are applicable
to different empirical measurements. A

second difficulty is that current

implementations of the GS model (ref. 11)

require Monte-Carlo simulations, which

make fitting the model to human data more

computationally time consuming.

This report describes an analytic extension
of the GS model, the Guided Search

Accuracy (GSA) model, which predicts

performance accuracy in a target-



localizationsearchtaskasafunctionof set

size. We develop analytic mathematical

expressions that allow quantitative fitting of
the model to human data in a time-efficient

manner using only three free parameters.

The significance of this implementation and
extension is that it will allow the direct and

quantitative comparison of Guided Search

and Signal Detection Theory models in

target-localization search tasks.

Theory

The Guided Search model

The GS model (ref. 11) was developed to

predict response times as a function of set
size in one type of visual search task. In

this type of search experiment, there are two

kinds of displays: target-present and target-
absent. Each consists of N elements. In

target-present trials, one element, the target,
differs from the others, the distractors, while

in target-absent trials, all the elements are
distractors. The observer's task is to search

the display to determine whether it is a

target-present trial or target-absent trial and,

as quickly as possible, to make a response

indicating the decision. The dependence of

the response times on the set size is
measured.

The GS model assumes that each element is

processed by broadly tuned channels that

correspond to categorical features (e.g.

"red'.', "green", "bright", etc.). The bottom-

up response of each element is determined

by a weighted average of the difference in

output between that element and its

neighbors. The top-down response is a
function of the match of the element to the

designated target. The final internal

response associated with a given element is

a weighted sum of the top-down and

bottom-up responses. This final response is

perturbed by the addition of internal neural

noise, assumed to be Gaussian, to yield a

final "activation" for each element. Finally,

visual attention serially searches through

those elements, whose activations are above
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a threshold (L), according to a self-

terminating procedure. Unlike the standard
serial search model where visual attention

proceeds randomly from one element to

another (ref. 5), in the GS model, visual

attention proceeds in an activity dependent

order. It begins with the element that

elicited the highest activation and continues

in order of decreasing activation. The search

terminates when either the target is found,
or no elements remain with activation above

the activation threshold. Rejected elements
are not revisited. It is assumed that

attending to each element requires a fixed

amount of processing time, and thus that the

response time is determined by the total
number of elements searched, and also that

if the target is attended, the observer always
correctly identifies that trial as a target-

present trial. If the search is terminated

without processing the target (because the

target did not exceed threshold), the

observer guesses "target absent" 97 % of the

time and "target present" 3 % of the time.

The Guided Search Accuracy model

We have developed an analytic extension of

the GS model, the GSA model (Fig. 1),

which predicts accuracy in a localization
search task. In localization search tasks, a

fixed-duration display containing a single

target and a number of distractors is

presented to the observer. The observer
then reports which of the N locations

contains the target. The accuracy of

correctly identifying the target location is
measured as a function of set size (N). The

structure of the GSA model is nearly

identical to the GS model, except that to

predict localization accuracy for fixed

stimulus durations, the serial attention stage

of the GSA model is restricted to examining

a fixed number of elements. If the target
has not been found within the restricted

presentation time, the model is forced to

guess.

The GSA model consists of two stages: a

noisy parallel-processing stage and a noise-



freeserial-attentionstage.In theparallel-
processingstage,eachelementin the
displayelicitsanoisyresponse,its
activation.Weassumethateachelement's
activationcanbedescribedbyaGaussian
probabilitydistribution,andthatthetarget
anddistractordistributionshaveequal
variances'.A targetelicits,onaverage,a
largeractivationthanadistractor(Fig.2).
Thetarget-distractordiscriminabilityisd', a
measureof thedistancebetweenthetarget
anddistractordistributions.Theresultsof
thisparallelprocessingstagearethensent
tothenoise-freeserialattentionstage,that
firstordersthesupra-thresholdelements
(thosewithactivationsgreaterthanthe
threshold,_,)accordingtotheiractivation.
Then,visualattentionseriallyprocessesthe
supra-thresholdelements,beginningwith
theelementwith thehighestactivationand
continuingindecreasingorderof activation
(Fig.1).Processingeachelementwith
visualattentionrequiresafixedamountof
timeandprocessingcontinuesuntilall
supra-thresholdelementshavebeen
processedor thetargetis found,oruntil the
displaypresentationends.If visual
attentionprocessesthetarget,themodel
alwayscorrectlyidentifiesthelocationof
thetarget(evenif itsactivationfromthe
initialparallelprocessingstagewasby
chancelowerthanthatof adistractor)_If
thetargetwasnotprocessedduringthe
displaypresentation,theGSAmodelis
forcedto guess.If all supra-threshold
elementshavenotbeenprocessed,the
modelchoosestheremainingsupra-
thresholdelementwith thehighest
activation.Otherwise(if all supra-threshold
elementshavebeenprocessed),it chooses

The equal-variance assumption is included to reduce

the number of free parameters in the GSA model, but

can be relaxed by adding a parameter specifying the

ratio of the variance of the target distribution to that of
the distractor.

21n the both the GS and GSA models and in other

models with a serial attention mechanism, visual

attention is assumed to be a homunculus that can
determine without error the identity of an attended
element.

randomly among all remaining sub-
threshold elements. Errors can occur when

there are either more supra-threshold

elements than can be processed serially

prior to the display being terminated, or

when the activation of the target is sub-
threshold.

Simplification of the GSA model

To facilitate fitting the analytic GSA model

to human performance data, we have

simplified the original model (ref. 11) by

reducing the number of free parameters.

First, because in most target-localization

search tasks, the observer is searching for an

a priori known target and not an odd-man

out, we assume that the responses of the

parallel processing stage are entirely

determined by the similarity of an element

to the known target (top-down activation).
Thus, we assume that the contribution of the

bottom-up processing is negligible; either
the output associated with an element does

not depend on a weighted average of the

difference of filter outputs for that element
and its neighbors (no lateral inhibition), or if

it does, this effect does not vary across set-

size conditions (constant lateral inhibition)?

Therefore the GSA model is applicable to
search displays that contain widely spaced
elements or that maintain a constant inter-

element distance for all set sizes. Second,
we assume that the activation threshold and

the maximum number of elements serially
processed are constant across trials. All

other aspects of the model are identical to

those of the Guided Search model 2.0 (ref.
11).

3The GSA model could be extended to include effects

of lateral inhibition if an appropriate model of how

target detectability varies as a function of element

density is specified. Alternatively, lateral interactions

between the activity elicited by each element can be

avoided if the elements are far apart such that the

distance between elements is large relative to their
size.
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Analytic implementation of the GSA
model

We have developed analytic expressions for

the performance accuracy (% correct) of the

GSA model. Because both the target and
distractor distributions are equal variance

Gaussians, without loss of generality, we
can rescale these distributions so that: 1)

both target and distractor distributions have

unit variance, 2) the mean distractor

activation is zero, 3) the mean target

activation is d'. Thus, the probability of a

distractor producing an activation x is:

1
d(x) = _exp(-x 2 / 2) (1)

The probability of the target producing an
activation x is:

1 _d,) 2
t(x)=--_exp(-(x /2)

(2)

We denote the cumulative probability of a

distractor producing an activation less than

x by

x

19(<x)= J d(x)dx, (3)

the probability of a distractor producing an

activation greater than x by

El(> x) = id(x)dx, (4)

the probability of the target producing an

activation less than x by

4

x

T(< x)= It(x)dx, (5)

and the probability of the target producing

an activation greater than x by

T(> x) =it(x)dx.

x

(6)

We compute the probability of the GSA

model correctly locating the target in two

separate regimes: 1) when the target

activation is supra-threshold'(i.e, larger than

K), 2) when the target activation is sub-

threshold. Because, in many experiments,
the display duration is fixed (usually brief:

50-300 ms) and examining each element

requires a fixed amount of processing time,

there is time to serially examine at most k

elements, which may be less than the total

number of supra-threshold elements. Thus,
we assume that on each trial, at most k

elements are serially examined, and that k is

less than or equal to N (if k>= N, there is

time to search all the elements). If the

target is examined, the model always

correctly chooses it2. Otherwise, the model

chooses the element with the next highest
activation threshold, or if none of the

remaining elements is supra-threshold, it

randomly guesses among the sub-threshold
elements.

In the first regime, when the target

activation is supra-threshold, there are two

ways the model can correctly identify the

target: 1) if the target ranks among the k

highest activations, it is guaranteed to be

processed and thus is always correctly

located, 2) if the target has the k+l highest
activation, it is next in line at the end of the

trial, so the model correctly chooses it'

' Instead of choosing the k+l _ element, a variation of

the model could guess among all unprocessed

elements. This latter version of the model produces

slightly worse performance for a given set of



Otherwise, it incorrectly chooses the
distractor, which is next in line. Thus, for

supra-threshold targets, the target is always

correctly chosen if it is among the k+l

highest activation, and is never correctly

chosen if it is not. To explicitly compute

the probabilities, it is necessary to consider

all possible permutations of distractor

labeling, which is performed in the factorial

terms of the subsequent equations.

The probability of a correct response given

that the target is supra-threshold and is

among the k+l highest activations (Pc,) is

the sum from j -- 1 to k+ I of the probability

of the target being supra-threshold and

being the j_ highest activation. Each term is

the product of the probability of the target

taking a value x, the probability of exactly j-

1 distractors taking a value larger than x, the

probability of exactly N-j distractors taking
a value less than x, times a binomial

coefficient describing the number of

possible distractor permutations:

(7)

k+l _V I" +*"2(7,)I, x>EO<>x J'
j=l 2

Therefore, percent correct localization for

the case in which the target activation is

supra-threshold can be calculated as the sum
of the probabilities of the target activation

ranking among the k+l highest activations

(Pc,).

In the second regime, the target activation is

sub-threshold, and is sometimes correctly

guessed from all the unprocessed elements

(Pc2). If the number of supra-threshold
distractors, j, is greater than k, the model

processes k distractors and then chooses the

distractor next in line, and so is never

correct. If the number of supra-threshold

distractors, j, is less than or equal to k, the

parameters than the version presented here. However,
the two models have virtually identical sensitivity to
variations in the parameters.

model first processes all j supra-threshold

distractors and then randomly chooses one

of the N-j sub-threshold elements.

Therefore, it is correct only if this random

choice is the target, which occurs with a

probability of I/(N-j). The probability of a

correct guess (Pc2) is then the sum over j
equal 0 to k of I/(N-j) times the product of

the probability of the target being sub-

threshold, the probability of exactly j

distractors being supra-threshold, and a

binomial coefficient describing all possible

distractor permutations:

(8)

Pc2 = _ . T(< ,;t)[D(> A)lJ[D(< 2)1 t_-'-j>\) /_N-))
j=O

Because the two possibilities described by

Eq. 7 and 8 are mutually exclusive, the total
percent correct in the localization of the

target for the GSA model is the sum of these

two independent probabilities:

Pc = Pc, + Pc 2 (9)

Results

We investigated the model's performance
(Pc) as a function of its three free

parameters: the activation threshold (X), the
maximum number of elements that can be

processed serially within the presentation

time (k), and the discriminability between

the target and distractors (d').

Effect of the activation threshold

The activation threshold is a primary cause

of performance errors for the GSA model.

Figure 3 shows the probability distributions

of the number of supra-threshold distractors

for a display with 6 distractors (N=7) for
four different values of the activation

threshold ([mel]X = -10, 0, 1, 2). The

probabilities of the target (d'=l) exceeding
the threshold are 0.98, 0.84, 0.5 and 0.17,

respectively, for these activation thresholds.

When there is no activation threshold (or it

is very negative) then the activations of all 6

distractors are always supra-threshold. As

5



the threshold is increased, the expected

number of distractors exceeding threshold

decreases and for high thresholds the shape

of the distribution also changes (Fig. 3).

Similar decreases in the probability of the

target's activation exceeding threshold also

occur. Thus, an increase in the activation

will generally decrease performance

accuracy for two reasons. First, it decreases

the probability that the target is supra-
threshold and thus that it is examined by the

serial processor, which forces the model to

guess more frequently. Second, it decreases
the number of distractors that are examined

by the serial processor and discarded from

the guessing subset.

For those set-size conditions in which the

number of elements in the display is small

so that all (or all but one) of the elements

can be processed serially (N < k + 1), the

activation threshold is the only source of

performance errors. If there were no
activation threshold, for N<k the model

would serially process every element in the

display and would always correctly identify

the target (Pc =100). Similarly if N--k+l,
the model would serially examine N-1

elements, then correctly guess the remaining

element (if it hadn't already found the

target) again producing perfect

performance. Figure 4 shows the decrease

in performance caused by increasing the
activation threshold for a fixed k = 4 and d'

= 1.0. As the activation threshold is

increased, there is an increasing probability

that the target activation is sub-threshold,
and that the model incorrectly chooses a

distractor. If the target is sub-threshold, the

model first examines the supra-threshold

distractors. If the number of supra-

threshold distractors is greater than k, then
the model incorrectly chooses the k+l _
distractor. If the number of number of

supra-threshold distractors is less than k,

then the model is forced to guess randomly

among the remaining elements. For high

thresholds, the guessing is less accurate

because there are a larger number of sub-

6

threshold distractors. Therefore, a high

threshold lowers performance, because it

causes the model to guess more frequently

and less accurately.

Effect of the maximum number of

elements serially processed (k)

The time limit imposed on the serial
allocation of visual attention is the second

source of errors for the GSA model. If an

element is processed in x ms and the

processing is temporally serial, then in a

presentation time "_,the model can only
process k = x/x elements. Therefore, if
there are N > k+l elements, the model will

be unable to process all of the elements
necessary to make a perfect decision. There

will be a non-zero probability that the target

is not processed by serial attention. In these

cases the model incorrectly chooses the
k+l _ element. Alternately, when there are

N < k+l elements, the serial processor will
be able to process all N-I elements

necessary for a perfect decision unless the

target itself is sub-threshold (i.e. no errors

will be generated due to the serial

processing time). Figure 5 shows the

performance accuracy as a function of set
size for four different values of the

maximum number of serially processed
elements (k = 2, 4, 6, and 8). Increasing k

changes the set size at which performance
degrades due to the serial processing

(inflection point in the curve) and the rate at

which performance degrades (downward

trend of the curve). Figure 5A shows that

changes in k can greatly affect performance
for a low activation threshold (_, = 0).

Figure 5B shows the effect of varying k is

much less dramatic for a larger activation

threshold (_, -- 1). Thus, when _, is high,

most errors are generated by _, itself, and

changes in k do not affect performance as

much. This is because _, (together with N)

determines the average number of supra-
threshold elements. A high _, limits the
effective number of elements available to

the serial processor. If the effective (as

opposed to actual) number of elements is



large,thenperformanceis limitedlargely by

k. If it is smaller than k, then performance
is mostly limited by k.

Effect of target-distractor

discriminability (d')

In the GSA model, target-distractor

discriminability is determined by the

distance between the target and distractor

distributions (Fig. 2). Decreasing the

physical difference between the target and
the distractors decreases the difference

between the mean activation of the target
(d') and the mean activation of the

distractor (always zero). As the target-

distractor discriminability is reduced, the

probability that the target does not rank

among the k highest activations increases,

thereby increasing errors. In addition, the

probability that the target activation does

not exceed threshold also increases thereby

generating even more errors. As a result,

decreasing target-distractor discriminability

will reduce the GSA model performance.

Figure 6 shows the model's performance

accuracy for four levels of target-distractor
discriminability (d' = 2.0, 1.5, 1.0, 0.5) as a

function of set size for k=4. Figure 6A

shows accuracy for _. = 0 and Figure 6B for
_, = 2. These results show that d' is an

important factor that influences

performance in two ways. First, d'

determines the overall level of performance,
lower d' values produce less accurate

performance for all conditions examined

(downward shift). Second, lower d' values
increase the observed set-size effects. In

particular, for high thresholds (_, = 2), as

shown in Figure 6B, performance initially
decreases rapidly as a function of set size,

then decreases much more slowly. The set

size for which this change is observed

depends on the value of d'; high d' values

produce a rapid decrease in performance
only for small set sizes, while low d' values

produce rapid decreases in performance
over a larger range of set sizes.

Monte Carlo Simulations

To verify that the analytic expressions

above (Eqs. 1-9) accurately describe the

GSA model, we compared the results from

these expressions with predictions from
standard Monte Carlo simulations of the

sequence of probabilistic events described

in Fig. 1. Performance predictions for the

GSA analytic expressions were in good
agreement with results from the brute force
Monte-Carlo simulations of the model

across the range of parameter settings
tested.

Conclusions

We have developed an extension of the
Guided Search model, the GSA model,

which uses explicit analytic expressions to

compute accuracy in a target-localization
task. Our implementation allows the

performance accuracy of the Guided Search

model to be directly compared to that of

human observers, the SDT model, or any

other model of target-localization accuracy.
We explicitly investigated the effect of

varying three model parameters (activation
threshold, maximum number of elements

serially processed within the presentation

time, and the target-distractor

discriminability) on localization accuracy as
a function set size. The GSA model will

facilitate the direct and quantitative

comparison of the ability of the Guided

Search and Signal Detection Theory models
to explain human search performance in

target-localization tasks.
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Figure 1. Schematic of the Guided Search Accuracy model. The parallel processing stage
generates a noisy response for each element (its activation). If this activation is above a

threshold (_.), it is passed to the serial processing stage. Attention sequentially examines

the k highest activations (only those that are suprathreshold) in descending order and

always correctly identifies the target if was examined. If it runs out of time or supra-

threshold elements, it guesses. If it runs out of time before running out of suprathreshold
elements, it picks the unexamined element with the highest activation. If it runs out of

supra-threshold elements, it randomly picks one of the subthreshold elements.
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different values of activation threshold for a fixed target-distractor discriminability (d' =
1.0) and set size (N= 7).
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